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Overview

1. Types of uncertainty
a. Local uncertainty
b. Global uncertainty
2. Types of models
a. Assessment models
b. Designh models
. An assessment model: guided Monte Carlo
. Design models
a. For local uncertainties
b. For global uncertainties
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Types of uncertainty

a. Global - uncertainties for which different values

produce dramatically different results: emissions
policies, large demand shifts, coal or nuclear

unavailability, extremes in fuel prices, extended drought,
dramatic change in technology investment costs.

b. Local — uncertainty in values a parameter may

take under a global realization: variation in load
growth, investment costs or fuel prices.

A Category B & C contingencies can be
treated as certainties, i.e., we plan as if
nd .gTO\Nm they will definitely occur, or they can
igh demd Local be treated as local uncertainties, with
i L assigned probabilities. .
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Types of models

a. Assessment — these provide performance

measures/indices: Power flow, time-domain
simulation, production cost, reliability evaluation (Monte
Carlo, enumeration).

b. Decision/Design — these provide investment
solutions that are "best” under the range of
uncertainties: generation expansion planning (GEP),

transmission expansion planning (TEP).

 Decision/Design models are used for GEP (e.qg.,
EGEAS) but very little for TEP.

 GEP models under uncertainty are research-grade.

 Deterministic TEP models are research-grade.

 TEP models under uncertainty under development.



An assessment model: Guided MC
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4. STATISTICAL
ANALYSIS

O Estimate reliability
indices
prob(load loss)
prob(unacceptable perf)
Risk

a Analyze Relationships
Distributions

Correlations



Design models for local uncertainties

Stochastic programming Robust optimization
t=0 t=1  t=2

UNCERTAINTY U2

UNCERTAINTY U1
e Weaknesses: Results in solution that

« Weaknesses: Cannot have too many is feasible for entire uncertainty
uncertainties; need prob distributions. range and therefore conservative.

« Strengths: Recourse counters « Strengths: May be computationally
conservatism; SP may also be more tractable. Need bounds, not

applicable for global uncertainties. prob distributions. 6



A design model for global uncertainty

v, 1s feasible (lower bound) or optimal
(upper bound) design for scenario k.

Feasible

x;1s a chosen \ ./ PN for

1on, optimal ° :
desig ,op. .a scenario k
for scenario 1.

The adaptation cost of x; to scenario k is the minimum cost to move x; to a
feasible or optimal design y, in scenario k. It measures the cost of our plan
x; if scenario k happens.




A design model for global uncertainty

Three possible futures

Re-
T investments |

| Choose x because it

i minimizes core cost + cost
@ i of adapting to futures 1-3
1

S
>

Decision variable 2
(e.g., path 1 capacity)

Decision variable 2
(e.g., path 2 capacity)

Identifies an investment that is “core” in that the total “CoreCost” plus
the cost of adapting it to the set of envisioned futures is minimum.

Minimize:

CoreCosts(xf)+B[ Z, AdaptationCost(Ax;)]
Subject to:

Constraints for scenario i=1,...N: g;(x™+Ax;)<b,

xf: Core investments, to be used by all scenarios i
Ax;: Additional investments needed to adapt to scenario i



A design model for global uncertainty
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xf: Core investments, to be used by all scenarios i
Ax;: Additional investments needed to adapt to

scenario i
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Final comments

. Tools for transmission assessment under

uncertainty are available and are used.

. Guided Monte-Carlo: a proven & effective way to

harness computation for design exploration

. Tools for deterministic transmission design are

just now becoming available, but transmission
design under uncertainty is a research area.

. Local uncertainties: addressed by SP and RO.
. Global uncertainties: Design for flexibility!
. SP, RO, and Flexibility design needs resources to

be developed into commercial tools.
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A deterministic TEP result
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A renewable-heavy generation portfolio, with particular emphasis on
wind in the Midwest and Northwest and geothermal in the West.
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Iterative GEP/TEP design process

Estimated
Econ signal

“Current transmission”

geo/climate
data
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(in MATLAB)
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scenario k

40-year gen/

1. Multi-year generation
load data

forecast (Using NETPLAN)

Candidate
circuits

3a. Multi-stage network expansion optimization
using MIP, solving in CPLEX

1

3b. SS Contingency screening

Add
1 constraints

Finalized
ss plan for
scenario k

Compare with
previous solution
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k=1,...N
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Scenarios used in flexibility design

Gas
production
limits Wind
Gas investment

price Demand cost

Cluster GP GPL D RPS C‘O.Czap WC
Benchmark L No L No No H
1 L No L No No L
2 L No L Yes No H
3 L No L Yes Yes L
4 L No H No Yes H
5 L ‘es L Yes Yes H
6 H No L Yes Yes L
7 H No H No Yes L
8 H ‘es L No No L
9 H ‘es L Yes Yes H
10 H ‘es H Yes No H




